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The unusual reactivity and well-defined chiral structurérahs
cyclooctene make it an attractive framework for stereocontrolled
synthesistrans-Cyclooctene has a chiral plane and a high barrier
to racemization (35.6 kcal/mo¥y,and the most stable “crowri®:
conformer oftranscyclooctene has an alternating sequence of
equatorial and axial hydrogens (Scheme 1) that is akin to chair
cyclohexane. The double bond @fanscyclooctene is twisted
severely in the crown conformatidnand as a consequence the
HOMO of trans-cyclooctene is relatively high in ener§yAs a
result, trans-cyclooctene displays unusual reactivity in HOMO-
alkene controlled cycloaddition reactions with diehés3-dipoles’
and ketene8trans-Cyclooctene derivatives also serve as excellent
ligands for transition metafsand they are useful monomers for
polymerization in the presence of radical initiators or metathesis
catalysts.

Although there are many routes to the pareans-cyclooctene,
there are few methods for preparing functionalized derivafies.
trans-Cyclooctene was first prepared as a mixture wiis-
cyclooctene via Hoffman elimination of trimethylcyclooctyl am-
monium iodide? Several elegant and stereospecific methods for
preparingtrans-cyclooctene frontiscyclooctene have also been
described? as exemplified by the sequence of epoxidation/LiPPh
addition/elimination shown in Scheme!®.However, a limitation
of such protocols is that multistep synthesis is required to invert
the alkene stereochemistry. A direct method for olefin inversion
would facilitate the synthesis and application of functionalized
derivatives oftrans-cyclooctenes.

The photochemical isomerization ois-cyclooctene represents
a direct method for the synthesis thins-cyclooctene. Elegant

Scheme 1. Multistep Synthesis of trans- from cis-Cyclooctene
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The apparatus for preparingans-cyclooctenes is illustrated
schematically in Figure 1. A quartz reaction flask containing methyl
benzoate (a singlet sensitizer) and a 0.018 M solution ofsa
cyclooctene derivative is photoirradiated at 254 nm. During
photoirradiation, the reaction mixture is continuously pumped
through a bed of a AgN@impregnated silica gel on column of
silica gel. Thetrans-cyclooctene derivative is selectively retained
by the AgNQ impregnated silica, but theis-isomer elutes back
to the reaction flask, where it is photoisomerized and recirculated
through the column. After complete consumption of tbis-
cyclooctene, the silica is removed and stirred withJ0H, which
liberates thetranscyclooctene from the AgN® The trans
cyclooctene derivative is then recovered by extraction.

A Rayonet RPR 200 reactor is a convenient light source for the
apparatus illustrated by Figure 1, although a 450-W Hanovia
mercury arc lamp is also effective. The apparatus was constructed
using a common metering pump, an inexpensive plastic column,
and standard LC tubing and fittings. No “homemade” parts are
required for the apparatus for preparations on a gram scale.

The scope of the photochemidadns-cyclooctene synthesis using
the described apparatus was investigated as shown in Table 1. The
method was successful for the synthesisrahs-cyclooctenes that

IxT

studies by Inoue have greatly expanded the scope and understanding,ere substituted by alkyl, hydroxyl, acetal, amide, and oxazolidi-

of the photoisomerization, which is typically run under singlet
sensitized condition¥. While the photochemical procedures are
effective for the preparation of the parent hydrocarbon, the
photochemical synthesis of functionalizedns-cyclooctenes has
been limited by lowtrangcis ratios under preparatively useful
conditions and by the photodegradation of trens-cyclooctene.
For example, we observed that 18-h photolysis of 500 mL of a
0.016 M solution of Z)-cyclooct-4-enol (9:1 ED/hexane, 1 equiv

of PhCQMe) gave <5% (E)-cyclooct-4-enol along with unchar-
acterized photodegradation products and 24% recovergd (
cyclooct-4-enol.

To improve the practicality of the photochemical protocol, we
devised a strategy that would drive the photoisomerization through
selective metal complexation of th@nsisomer. Our experiments
were based on the earlier observation thats-cyclooctene forms
a water soluble complex with AgNf) whereascis-cyclooctene
binds only weakly to AgN@®°P12Qur strategy was also grounded
in classic studies on the photoprotonation reactions of cyclic alkenes,
which had shown that theis/trans equilibria could be driven by
selective addition reactions tins-cycloalkenes® However, such
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none functionalitie$® It was also demonstrated that arans
cyclooctene derivativeh could be prepared. The yields in Table
1 (63% on average) compare favorably with the overall yields from
multistep preparations ¢fans-cyclooctene frontis-cyclooctene;1©
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Figure 1. Schematic of apparatus ftnrans-cyclooctene synthesis.
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Table 1. Synthesis of trans-Cyclooctene Derivatives® In summary, selective complexation to Aghl€llica was used
R /R to facilitate photochemical synthesestains-cyclooctene deriva-
O hv, PhCO,Me, t, ether/hexane @ tives on a useful scale. A derivative adopts a crown conformation
active removal of trans isomer despite an axial substituent, and it was shown that alkene stereo-
OH on chemistry is transferred to the hexahydropyrrolizine framework in
@ H@ Heees the transannular cyclization of 5-am@ns-cyclooctene.
ol b2b OH Acknowledgment. This work was supported by NIH Grant
2a ar 22t 2 GMO068640-01
68%* 72%(0.72 g) 64% dr: 1.9:1° el
Ho O 7% (3 9 g) o Me Supporting Information Available: The photochemical apparatus
g @ is described in detail. Provided are experimental and characterization
Heee 0 Me details,'H and*3C NMR spectra for new compounds, NOE data4or
and CIF files for2c, 3, and the desmethyl analogue2y This material
2d dr: 11-1 is available free of charge via the Internet at http://pubs.acs.org.
53% 1% 65% (0.65 g)
dr: 3.0:1 o dr: 3.4+ 62% (3.1 9) References
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